
ImageMan 2.0 Help Reference

ImageMan 2.0 API

API Quick Reference

ImageMan How-To Section

Changes from ImageMan Version 1.06

Supported File Formats

How to Contact DTI

How to Order ImageMan

ImageMan Release Notes

ImageMan Technical Support
You may obtain technical support for the ImageMan libraries by Phone, FAX, CompuServe
and our own StarMan Bulletin Board system.

Data Techniques, Inc.
340 Bowditch Street #6
Burnsville, NC

Tech Support: 704-682-4111 9am to 5pm EST
Fax: 704-682-0025
BBS: 704-682-4356 (2400-14.4K V.42, 24 Hours/Day)
CompuServe: GO DATATECH
Cserve ID: 74431,1412

ImageMan Ordering Information
Pricing
ImageMan DLL $495
ImageMan/VB $295
ImageMan for Windows NT $895

ImageMan Src Code $1495

We accept Visa, MasterCard, American Express, COD or prepayment. All orders include free
ground shipping via UPS and Next Day Air shipping is available for an additional charge.

All DTI products are backed by our 90 day full money back guarantee.

To order call:
800-955-8015
704-682-4111

Or mail orders to:

Data Techniques, Inc.
340 Bowditch Street, Ste 6
Burnsville, NC 28714

ImgBrightness
ImgClose
ImgCopy
ImgCreateDDB
ImgDrawImage
ImgErrBox
ImgErrString
ImgFromClipboard
ImgFromDIB
ImgFromWMF
ImgGamma
ImgGetDDB
ImgGetDIB
ImgGetExt
ImgGetInfo
ImgGetPage
ImgGetPalette
ImgGetROP
ImgGetStatus
ImgGetWMF
ImgInit
ImgInvert
ImgLoad
ImgMirror
ImgOpenEmbedded
ImgOpenSolo
ImgPageCount
ImgPrintImage
ImgReduceColors
ImgRotate
ImgSetDefaultStatusProc
ImgSetPage
ImgSetROP
ImgSetStatusProc
ImgShutdown
ImgToClipboard
ImgUnload

ImgXAbort
ImgXBeginWrite
ImgXEndWrite
ImgXErrBox
ImgXErrString
ImgXFileDialog
ImgXGetExt
ImgXGetStatus
ImgXOptBlkAdd
ImgXOptBlkCreate
ImgXOptBlkDel
ImgXOptBlkGet
ImgXWriteBlock
ImgXWriteBMPBlock
ImgXWriteDIB

int FAR PASCAL ImgBrightness(hImage, nBrightness)
This function brightens or darkens the referenced image.
Example

Parameter Type/Description
hImage HANDLE    Identifies the image to be altered.
nBrightness INT Specifies the brightness factor to be applied to the image.

Return Value
The return is IMG_OK on success, an error value otherwise.

Comments
The value of nBrightness can range from -255 to 255. Postive numbers will darken the
image while negative values will lighten it.

After calling this function you must call the ImgGetPalette function to get a handle to the
new palette to be used when displaying the adjusted image.

int FAR PASCAL ImgClose(hImage)
This function closes the referenced image.
Example

Parameter Type/Description
hImage HANDLE    Identifies the image to be closed.

Return Value
The return value indicates whether the image was closed successfully. It is nonzero if the
image was closed successfully. Otherwise, it is zero.

Comments
This call closes the image file and frees any resources which were allocated for processing
the image. An application should use this call to close an image when it is no longer
needed. Failure to call this function may cause memory or other resources to remain
allocated needlessly.

HANDLE FAR PASCAL ImgCopy(hImage, nWid, nHi, lpSrc, lFlags)
This function copies all or part of the given image into another image, size nWid x nHi,
returning an ImageMan handle which represents the new image.
Example

Parameter Type/Description
hImage HANDLE Identifies the image to copy from.
nWid, nHi int Specify the width and height of the resulting image.
lpSrc LPRECT Specifies the portion of the source image to copy into the

new image.
lFlags LONG Flags specifying scaling method for monochrome images.

This can be either COPY_DEL (delete scan lines & pixels),
COPY_AND (preserve black pixels), or COPY_OR (preserve white
pixels).

Return Value
Return value is a valid ImageMan image handle on success, 0 on error. In the event of an
error the ImgGetStatus function will return the error code.

Comments
ImgCopy is one of the most important functions available in ImageMan. With it you can
scale an existing image, or portion thereof, up or down however you like.

If the source image is not currently loaded, ImgCopy will perform the image copy in bands,
allowing an application to create a low-resolution copy of a much larger image without
having the larger image in memory at any point. In this case, the source image will still be
unloaded when the ImgCopy function is completed.

The lFlags parameter allows you to control the scaling method used when shrinking
monochrome images. The COPY_DEL flag, which is the default, simply eliminates scan lines
and pixels without regard to color. This is the fastest scaling method. COPY_AND and
COPY_OR allow you to scale an image while preserving either black or white pixels,
respectively. These methods are slightly slower, yet can produce significantly superior
results.

Unfortunately, there is no easy way to determine which of these methods should be used
for a given scaling operation. As a general rule, shinking an image less than half could be
done using the COPY_DEL flag; anything greater than half-size should use the COPY_AND or
COPY_OR flags.

int FAR PASCAL ImgCreateDDB(hImage, hDC, nWid, nHi)
This function creates a Windows Device Dependent Bitmap (DDB) for the given image,
enabling the image to be drawn more quickly than a DIB or Metafile.
Example

Parameter Type/Description
hImage HANDLE Identifes the image to create a DDB for.
hDC HDC Specifies a device context used when creating the DDB. The

resulting DDB will reflect this DC in terms of color makeup.
nWid, nHi int Specify the width and height for the resulting DDB. These are

only used when converting a vector image to a DDB; otherwise
they are ignored.

Return Value
The return value is IMG_OK if the DDB was created successfully, an error value otherwise.

Comments
For really fast drawing of a given image, this function should be called before
ImgDrawImage is called. If a DDB exists for a given image, ImgDrawImage will use the DDB
when drawing.

int ImgDrawImage(hImage, hDC,    lpDestRect,    lpSrcRect)
This function displays    the image referenced by hImage on the screen at the specified
location and size.
Example

Parameter Type/Description
hImage HANDLE    Identifies the Image to be displayed.
hDC HDC    Identifies the device context for the display.
lpDestRect LPRECT    Points to a RECT data structure containing the logical

screen coordinates to draw the image into.
lpSrcRect LPRECT    Points    to a RECT data structure specifying the portion of

the source image which will be displayed.

Return Value
The return value indicates whether the image was displayed successfully. It is nonzero if
the image was displayed successfully. Otherwise, it is zero.

Comments
The ImgDrawImage does some simple decision making to determine how to draw the given
image. If a device dependent bitmap (DDB) exists for this image, the resulting bitmap will
be drawn to the screen with a StretchBlt call; otherwise, raster-based images will be drawn
using StretchDIBits and vector-based images will be drawn by playing the metafile to the
output device context. Note that if there is no currently loaded image handle (DIB, DDB, or
WMF), the ImgDrawImage function will load one.

If lpSrcRect is NULL then the entire image will be displayed in lpDestRect.

int FAR PASCAL ImgErrBox(hParent)
This function displays a Windows messagebox containing a textual description of the last
ImageMan error.
Example

Parameter Type/Description
hParent HANDLE Specifies the handle of Window to be used as the parent

of the messagebox.

Return Value
The return value is IMG_OK.

int FAR PASCAL ImgErrString(lpszBuf, nMaxLen)
This function copies the text describing the last error into a user supplied buffer.
Example

Parameter Type/Description
lpszBuf LPSTR    Points to a user defined buffer to receive the error string.
nMaxLen WORD    Indicates the size in bytes of the buffer pointed to by

lpszBuf.

Return Value
The return value indicates whether the error string was retrieved successfully. It is nonzero
if the error string was retrieved successfully. Otherwise, it is zero.

Comments
The error string contains the filename and the description of the error separated by a
semicolon. For some errors the string will not contain a filename so the first character will
be a semicolon.

HANDLE FAR PASCAL ImgFromClipboard()
This function returns an ImageMan image handle representing the clipboard contents.
Example

This function takes no parameters.

Return Value
The return value is a valid ImageMan image handle on success, a NULL handle on failure.

Comments
ImageMan can currently accept the CF_DIB and CF_METAFILEPICT formats over the
clipboard. An application should verify that one of these formats is available before calling
this function; otherwise, a NULL handle will be returned.

An image created from the clipboard can be manipulated in the same manner as a
"normal" ImageMan image, with the exception that it cannot be unloaded via the
ImgUnload function. Also, the image will return IMG_MEM_BASED in the flags field of an
ImgGetInfo call.

HANDLE FAR PASCAL ImgFromDIB(hDIB)
This function creates an ImageMan image from a Windows device independent bitmap
(DIB) and returns an ImageMan handle to the caller.
Example

Parameter Type/Description
hDIB HANDLE A handle to a DIB in packed DIB format. ImageMan takes

responsibility for the DIB when the function is completed.

Return Value
The return value is a valid ImageMan image handle on success, NULL on failure.

Comments
Once the call has completed, the application can treat this image as it would any other
ImageMan image, with the caveat that the image cannot be unloaded via ImgUnload. Also,
a call to ImgGetInfo will return the IMG_MEM_BASED flag in the lFlags parameter to indicate
that this image has no external file to recreate itself from.

HANDLE FAR PASCAL ImgFromWMF(hWMF, lpRect)
This function returns an ImageMan image handle given a handle to a Windows Metafile and
it's bounding box.
Example

Parameter Type/Description
hWMF HANDLE Handle to a Windows Metafile. ImageMan taks

responsibility for the Metafile upon calling this function.
lpRect LPRECT Points to a RECT structure which contains the metafile's

bounding box.

Return Value
The return value is a valid ImageMan image handle on success, NULL on failure.

Comments
As with the ImgFromDIB function call, once the handle    has been returned, the application
can treat it as it would any other ImageMan image, except that it cannot be unloaded via
the ImgUnload function. Calling ImgGetInfo for the returned image will reveal that the
IMG_MEM_BASED flag is set, indicating that the image has no external representation to
recreate itself from.

int FAR PASCAL ImgGamma(hImage, nGamma)
This function performs gamma correction on the given hImage.
Example

Parameter Type/Description
hImage HANDLE Image to gamma-correct.
nGamma INT Gamma-correction value (10-50)

Return Value
The return value is IMG_OK on success, an ImageMan error code on failure.

Comments
Acceptable nGamma values range from 10 (1.0) to 50 (5.0).

HANDLE FAR PASCAL ImgGetDDB(hImage, hDC)
This function returns a handle to a Windows device-dependent bitmap (DDB) which
represents the given image.
Example

Parameter Type/Description
hImage HANDLE identifies the image.
hDC HDC The image is created to be compatible with this device

context. This paramter cannot be NULL.

Return Value
The return value is a handle to a Windows bitmap on success, NULL on failure.

Comments
The returned image will take on the color characteristics and bit-depth of the passed device
context; therefore, it's important to make sure that a palette has been selected into the
device context before calling this function

HANDLE FAR PASCAL ImgGetDIB(hImage, bNewDib, lpSrcRect)
This function retrieves a handle to hImage in packed DIB format.
Example

Parameter Type/Description
hImage HANDLE    Identifies the Image whose bits should be retrieved.
bNewDIB BOOL If false, the function returns a handle to ImageMan's internal

DIB; if true, ImageMan allocates a new DIB and returns that (in this
case, the caller is responsible for the returned handle).

lpSrcRect LPRECT Identifies the portion of the image to be extracted in DIB
format. Any rectangular part of the image may be specified.

Return Value
The return value is a global    handle to a packed DIB if the function is successful, NULL if
not.

Comments
This function should be used to retrieve the bits of a raster image in DIB format. The DIB
format maintains all the color information of the original image.

Note
ImgGetDIB works only with raster images; using this function on vector images will result in
an IMG_BAD_TYPE error being returned to your application.

LPSTR FAR PASCAL ImgGetExt()
This function returns a string containing the image formats currently supported by
ImageMan.
Example

This function takes no parameters.

Return Value
The returned string is in the Windows common dialog format, and is therefore suitable for
passing directly into the GetOpenFileName function. The caller is responsible for freeing the
string when done with it (call GlobalFreePtr(lpString) to release it).

LPBITMAPINFO FAR PASCAL ImgGetInfo(hImage, lpFlags)
This functions returns a pointer to an BITMAPINFO struct which defines the image.
Example

Parameter Type/Description
hImage HANDLE    Identifies the image.
lpFlags LPINT Points to an integer which receives the flags for the given

image (see below for a list of possible flags).

Return Value
Returns a pointer to ImageMan's internal BITMAPINFO struct for the given image. Since this
struct belongs to ImageMan, the caller should not alter the values.

Comments
The currently defined flags (as found in IMGMAN2.H) are as follows:

IMG_RENDER_SELF When set, ImgDrawImage will call the DIL to render the image
to the screen. This allows a library to have more control over the drawing of an
image. In general, it probably won't help you much to look at this flag.

IMG_PRINT_SELF    When set, ImgPrintImage will call the DIL to handle printing the
image. This is particularly useful for the EPSF DIL, which needs to output PostScript
code directly to the printer.

IMG_PRNT_VECTOR Indicates that the image will be printed as a metafile.

IMG_DISP_VECTOR Indicates that the image will display as a metafile.

IMG_MEM_BASED This flag is set if the image came from a memory-based source
(clipboard, hDIB, hWMF).

int FAR PASCAL ImgGetPage(hImage, lpPage)
This function places the currently active page (0-based) for the given image in the variable
pointed to by lpPage.
Example

Parameter Type/Description
hImage HANDLE Identifies the image to get the information for.
lpPage LPINT Location to place the returned page count into.

Return Value
The return value is IMG_OK on success, an error value otherwise

HANDLE FAR PASCAL ImgGetPalette(hImage)
This function returns a handle to a GDI logical palette which describes the color content of
an image.
Example

Parameter Type/Description
hImage HANDLE    Identifies the image you want a palette for.

Return Value
The return value is a handle to a GDI logical palette. It is NULL if an error occurred.

Comments
The handle returned from this function is created via the GDI CreatePalette function, and
must be selected into a device context and realized before it has an effect on image
display.

Note
Your application is responsible for deleting this object when it is no longer of any use.

DWORD FAR PASCAL ImgGetROP(hImage)
This function returns the current ROP code for the given image.
Example

This function takes no parameters.

Return Value
The return value is the current ROP code

int FAR PASCAL ImgGetStatus()
This function returns the current status of ImageMan.
Example

This function takes no parameters.

Return Value
The return value is the error code set by the last ImageMan function call. If this function
returns a value other than IMG_OK then the ImgErrBox() or ImgErrStr() functions can be
called to get a more detailed description of the error.

Comments
This function returns the status of only the last ImageMan function call. For a complete list
of valid status values, refer to Appendix A.

HANDLE FAR PASCAL ImgGetWMF(hImage, lpRect)
This functions returns a handle to a Windows Metafile that represents hImage. This function
is only valid for vector images.
Example

Parameter Type/Description
hImage HANDLE Identifies the image.
lpRect LPRECT Points to a rectangle which will receive the metafile's

bounding box. This is necessary to display the metafile with the
proper aspect ratio.

Return Value
The return value is a handle to a Windows Metafile on success, a NULL handle on failure.

Comments
This function should only be called for images which have the IMG_DISP_VECTOR flag set.
Note that this function will load the metafile if it isn't already loaded (or has been explicitily
unloaded)

int FAR PASCAL ImgInit()
This function initializes the ImageMan library, and must be called before any other
ImageMan calls are made.
Example

This function takes no parameters.

Return Value
The return value is IMG_OK if ImageMan was initialized without errors. Otherwise, it is an
ImageMan error code

int FAR PASCAL ImgLoad(hImage, lpRect)
This function forces all or part of a given image to be "loaded", i.e., read in from disk into a
DIB or Metafile.
Example

Parameter Type/Description
hImage HANDLE Identifies the image to load.
lpRect LPRECT Specifies the portion of the image to    load, in image coordinates.

Return Value
Returns IMG_OK on success, an error value otherwise.

Comments
An image is not loaded when ImgOpen is called; instead, ImageMan gives each application
explicit control over when tor if he image is loaded. While this function loads the image
explicitily, there are several which will, if called when the image is not loaded, implicitly
load the entire image. These are as follows:

ImgDrawImage
ImgGetDIB
ImgGetWMF
ImgGetDDB
ImgToClipboard
ImgPrintImage

If ImgLoad is used to load a portion of an image, subsequent calls to ImgGetInfo will reflect
the image's loaded dimensions, not it's original size. To restore the image at it's original
dimensions, use the ImgUnload function.

Note
The ImgCopy function operates as a special case in order to allow an application to reduce
a large image to a smaller one without having to have the large image entirely in memory.
If the image to copy isn't loaded at the time of the ImgCopy call, it will be loaded in small
bands and copied piecemeal to the destimation image—when the ImgCopy function is
completed, the source image will not have a loaded image to draw from. Of course, if the
source image is already loaded, ImgCopy will simply copy it to the destination and the
original image will remain loaded and intact.

int FAR PASCAL ImgMirror(hImage, bVert, bHoriz)
This function mirrors the referenced image along the specified axis.
Example

Parameter Type/Description
hImage HANDLE    Identifies the image to be closed.
bVert BOOL If True then the image is mirrored vertically.
bHoriz BOOL If True then the image is mirrored horizontaly.

Return Value
The return value indicates whether the image was transformed successfully. It is nonzero if
the operation was successful. Otherwise, it is zero.

Note
This function changes the image that you pass to it. If you want to preserve the original
image, use the ImgCopy function to copy the image and mirror the copy.

HANDLE ImgOpenEmbedded(hFile, lOffset, lLen, lpExt)
This functions opens and initializes an image file that is embedded in another file.
Example

Parameter Type/Description
fHand INT Specifies the DOS file handle of the (previously opened) file in

which the image is embedded.
lOffset LONG Specifies the offset (in bytes) of the embedded image from

the beginning of the file containing it.
lLen LONG Specifies the length (in bytes) of the embedded image

within the containing file.
lpExt LPSTR    Specifies that ImageMan should process the file as an

image with the extension specified.

Return Value
The return value specifies the handle used to refer to the image. It is NULL if the file could
not be opened.

Comments
This function allows you to open an image file that is contained within another file.
ImageMan will determine the image type from the lpExt parameter. Before ImageMan can
access this file, your application must open the file - ImageMan will not open or close the
file at any point

HANDLE ImgOpenSolo(lpFilename, lpExt)
This function opens the specified image and returns a handle to be used with the other
ImageMan functions.
Example

Parameter Type/Description
lpFileName LPSTR    Points to a buffer containing the path & filename of the

image to open.
lpExt LPSTR    Specifies that ImageMan should process the file as an

image with the extension specified.

Return Value
The return value specifies the handle used to refer to the image. It is NULL if the file could
not be opened.

Comments
ImageMan will determine the image type from the extension passed in the filename. If the
image file has a nonstandard extension (i.e. a PCX file with extension other than .PCX) the
lpExt parameter can specify which format the image should be processed as. For instance,
to open a PCX file called junkpcx.jnk, you would use the following ImgOpen call:

ImgOpenSolo("junkpcx.jnk","PCX")

Note
You normally should not need to specify the lpExt parameter, as for the most part the
images you encounter will have valid extensions; in these cases, lpExt should be set to
NULL.

int FAR PASCAL ImgPageCount(hImage, lpCnt)
This function returns the number of pages that are in the image file into the variable
pointed to by lpCnt.
Example

Parameter Type/Description
hImage HANDLE Identifies the image to get the page count for.
lpCnt LPINT Points to an integer which will receive the page count.

Return Value
The return value is IMG_OK on success, an error value otherwise.

int ImgPrintImage(hImage, hPrnDC, lpDestRect, lpSrcRect)
This function prints the specified image or portion thereof on the printer at the specified
location and size.
Example

Parameter Type/Description
hImage HANDLE    Identifies the Image to be displayed.
hPrnDC HDC    Identifies the device context for the printer.
lpDestRect LPRECT    Points to a RECT data structure containing the area on

the printer in which the image will be printed.
lpSrcRect LPRECT    Points to a RECT data structure con taining the

coordinates of the portion of the source image which should be
printed.

Return Value
The return value indicates whether the image was printed successfully. It is nonzero if the
image was printed successfully. Otherwise, it is zero.

Comments
If lpSrcRect is NULL then the entire image will be displayed in the area specified by the
RECT pointed to by lpDestRect.

Note
Raster images cannot be printer on vector devices such as plotters. If you attempt to print
a raster image on a vector device ImageMan will return the IMG_BAD_PRN error code.

HANDLE FAR PASCAL ImgReduceColors(hImage, nColors, nFlags)
This function returns a new image with the specifed number of colors.
Example

Parameter Type/Description
hImage HANDLE    Identifies the image to be reduced.
nColors INT Specifies the number of colors in the new image (currently

limited to 256, 16, or 2).
nFlags INT Specifies options to be used when reducing the colors.

Return Value
The return value indicates whether the image was processed successfully. A return value of
NULL indicates the color reduction failed, while a non-zero value is the ImageMan handle to
the new image.

Comments
Allowable values for the nColors parameter are 2, 16, and 256.Option Flags include:

IMG_BURKES Specifies the Burkes Dithering algorithm.
IMG_BAYER Specifies the Bayer Dither be used.
IMG_FLOYD Specifies the Floyd Steinberg dither.
IMG_GRAYSCALE Specifies the image should be converted to grayscale.
IMG_FIXEDPALETTE Dithers the image to a fixed palette that is internal to ImageMan.
This is extremely useful for displaying several color images simultaneously.

Note
This function does not alter the original image; rather, it returns a new image based on the
passed parameters.

HANDLE FAR PASCAL ImgRotate(hImage, nDegree, rgbCol)
This function rotates the referenced image in the counterclockwise direction and returns a
handle to the new image.
Example

Parameter Type/Description
hImage HANDLE    Identifies the image to be rotated.
nDegree INT Specifies the number of degrees (measured counterclockwise)

to rotate the image.
rgbCol COLOREF Specifies the background color when rotating to non 90

degree multiples.

Return Value
The return value indicates whether the image was rotated successfully. A return value of
NULL indicates the rotation failed while a non-zero value is the ImageMan handle to the
newly rotated image.

Comments
Currently, images may only be rotated by multiples of 90 degrees. Future releases will
support abitrary rotations.

Note
This function does not alter the original image; rather, it returns a new image based on the
passed parameters.

int FAR PASCAL ImgSetPage(hImage, nPage)
This function prepares the given image to read from image number nPage in the file.
Example

Parameter Type/Description
hImage HANDLE Identifies image to set page for.
nPage int 0-based page number to seek to.

Return Value
The return value is IMG_OK on success. If an invalid page number is passed to the function,
it will return IMG_INV_PAGE.

int FAR PASCAL ImgSetROP(hImage, dwNewROP)
This function sets the Windows ROP code to be used when displaying and printing the given
image.
Example

Parameter Type/Description
hImage HANDLE Handle to the image to be affected.
dwNewROP DWORD    Contains the ROP code to be used when displaying or

printing raster images.

Return Value
The return value should be IMG_OK.

Comments
The ROP code is only used when displaying or printing raster images. An application can
determine whether an image is in vector format by looking at the IMG_DISP_VECTOR and
IMG_PRNT_VECTOR flags returned by ImgGetInfo.

int FAR PASCAL ImgSetStatusProc(hImage, lpStatProc, lCnt,
dwUser)
This function allows an application to register a status function to be called during image
loading with the completed percentage of the loading process.
Example

Parameter Type/Description
hImage HANDLE Specifies the image to register the status function for.
lpStatProc STATUSPROC Pointer to the function to call each interval.
lCnt LONG Specifies the interval between calls to lpStatProc. This is

based on the size of the created image.
dwUser DWORD User-defined info to be passed to status procedure.

Return Value
The return value is IMG_OK.

Comments
Use this function to implement a bar-chart during loading of the image file.

void FAR PASCAL ImgShutdown()
This function shuts down the ImageMan library, and must be called before the application
terminates to ensure that all internal objects are properly released.
Example

This function takes no parameters.

int FAR PASCAL ImgToClipboard(hImage)
This function places the given ImageMan image on the clipboard in CF_DIB or
CF_METAFILEPICT format.
Example

Parameter Type/Description
hImage HANDLE Identifies the image to place on the clipboard.

Return Value
The return value is IMG_OK if the image is successfully placed on the clipboard, IMG_ERR
otherwise.

Comments
The image is placed on the clipboard in either CF_DIB or CF_METAFILEPICT format,
depending on the value of the IMG_DISP_VECTOR flag (as returned from ImgGetInfo). If the
flag is set, the image is placed in CF_METAFILEPICT format.

int FAR PASCAL ImgUnload(hImage, bDIB, bDDB, bWMF)
This function causes one or all of the given image's internal image representations (i.e.,
DIB, Device Dependent Bitmap, or Metafile) to be unloaded from memory.
Example

Paramater Type/Description
hImage HANDLE Identifies the image to be unloaded.
bDIB BOOL True if the DIB portion of the image should be unloaded.
bDDB BOOL True if the Device Dependent Bitmap portion of the image

should be unloaded.
bWMF BOOL True if the Windows Metafile portion of the image should be

unloaded.

Return Value
The return value is IMG_OK on success, an error value otherwise.

Comments
This function is useful for conserving memory. Note that even if the internal image is
unloaded, the image information returned from ImgGetInfo remains consistent. Note also
that no single image could have both a Metafile and a DIB loaded simultaneously—vector
images will load a Metafile, raster images will load a DIB; both image types can create a
DDB through the use of the ImgCreateDDB function.If the ImgLoad function is used to load
a portion of the image, subsequent calls to ImgGetInfo will reflect the image's "new"
dimensions, i.e., the dimensions specified to load the image portion. The original image,
and it's original dimensions, cannot be accessed unless ImgUnload is called, followed by an
ImgLoad.

Note
This function does nothing to memory-based images, and will simply return IMG_OK.

int ImgXWriteDIB(lpFile, lpExt, hDIB, hOptBlk, hWnd, lOpts)
This function is used to write a DIB in memory to a supported image format.
Example

Parameter Type/Description
lpFile LPSTR Points to asciiz string containing the name of the file to

save the image in or NULL.
lpExt LPSTR Points to a asciiz string containing the extension of the

image format to use when saving this image or NULL.
hDIB HANDLE This is a global memory handle to a Windows DIB in   

CF_DIB format.
hOptBlk HANDLE Handle to an option block for this image or NULL
hWnd HANDLE This is a handle to the applications main wnidow.
lOpts LONG Contains flags which set various options when saving the

image.

Return Value
The return value is IMGX_OK if the image was saved, otherwise it is IMGX_ERR.

Comments
If you need to write a DIB in sections (bands) then you will need to call the low-level
functions ImgXBeginWrite, ImgXWriteBlock, and ImgXEndWrite. The filename pointed to by
lpFile must contain a supported file extension    unless the lpExt parameter points to a string
containing the format extension to use. The lpFile parameter can be NULL if you specify the
IMGXOPT_FILE_PROMPT option in the lOpts parameter.If you are saving an image and wish
to use a non-standard file extension then the lpExt parameter must point to a string
containing the 1-3 character extension of the image type you wish to save the image as.
This parameter can be set to NULL when saving images using a standard file extension. For
instance, if you wish to save an image as a TIFF file in a file called SAMPLE.001 you would
have to pass a pointer to "SAMPLE.001" as the lpFile parameter and a pointer to a string,
"TIF", as the lpExt parameter.

The lpOpts parameter allows you to specify some additional parameters to the function.
Multiple options can be specified by logically or-ing them i.e. IMGXOPT_COMPRESS |   
IMGXOPT_OVERWRITE.The following options can be specified in the lOpts parameter:

IMGXOPT_COMPRESS This option causes the image to be written in compressed
form if the image format supports compression otherwise it is ignored.
IMGXOPT_OVERWRITE This option causes any existing file with the same name to
be overwritten.
IMGXOPT_OVERWRITE_PROMPT This option causes the function to prompt the
user if an existing file has the same name. The user can then select to overwrite the
existing file or select a new filename.
IMGX_FILE_PROMPT This options causes the common file save dialog to be
displayed to prompt the user for the output filename. The user can also select the
format of the file to export. This filename will override any filename specified in the
lpszFilename parameter. If you specify this option you can pass NULL as the lpFile
parameter.

int ImgXGetExt(lpszBuf)
This function is used to retrieve the extensions currently supported by ImageMan/X.
Example

Parameter Type/Description
lpszBuf LPSTR Points to the buffer to hold the extension list.

Return Value
The return value depends on the lpszBuf parameter: if lpszBuf is NULL, the return value is
the size of the buffer needed to hold the extension string; if lpszBuf is not NULL, the return
value is undefined.

Comments
This function copies the list of extensions currently supported by ImageMan/X into the
buffer pointed to by lpszBuf. lpszBuf should be large enough to contain the string; to
determine the string length, call this function with lpszBuf set to NULL. The returned
extensions are of the form:

ext;description~ext;description~....~ext;description

where each extension is separated by a '~' (tilde), "ext" is the (up to) 3 letter file extension
and "description" is a short textual description of the extension. For example:

PCX;Publisher’s Paintbrush (*.pcx)~BMP;Windows Bitmap (*.bmp)

The short textual description is designed to be used in a dialog box as a description of each
extensions’s format.

int ImgXOptBlkAdd(hOptBlk, lpszKey, lpszValue)
This function adds a key/value pair to an Option Block (OptBlk).
Example

Parameter Type/Description
hOptBlk HANDLE      Handle to the opt block to add or alter (obtained from

ImgXOptBlkCreate)
lpszKey LPSTR    Points to the key value to add or alter.
lpszValue LPSTR    Points to the new value for the key.

Return Value
The return value is a handle to the OptBlk.

Comments
This function adds a new key value to an option block or alters an existing key value. The
opt block consists of a set of key/value pairs of the form "key = value", for instance:

Compress = DEFAULT
CPU = INTEL

To remove a key from the opt block, call ImgXOptBlkAdd, setting the key to the key you
wish to remove and the value to NULL:

ImgXOptBlkAdd(hOptBlk, "Compress", NULL);

All optblock strings are case insensitive.

Note
The option block string must be specified exactly as shown; i.e., there must be a space to
either side of the '='.

HANDLE ImgXOptBlkCreate(lpszInit)
This function creates an Option Block (OptBlk) and optionally initializes it.
Example

Parameter Type/Description
lpszBuf LPSTR    Points to a buffer containing initial values for the opt

block.

Return Value
The return value specifies a handle used to reference this OptBlk in the future.

Comments
This function creates and, optionally, initializes an opt block. An opt block is a set of
parameters which define the current exporting procedure. When initializing an opt block
(lpszInit is not NULL), each opt block parameter is separated by a carriage return (char
value 13). For example:

lpszBuf = "Compress = ON\rEmbed = 5235,5"

NOTE
The entries to an OptBlk must have spaces around the equals ('=') symbol for the block to
properly recognize the values.

int ImgXOptBlkDel(hOptBlk)
This function deletes an Option Block (OptBlk) from memory.
Example

Parameter Type/Description
hOptBlk HANDLE    Handle to the opt block    to delete.

Return Value
The return value is NULL if the function is successful.

Comments
This function deletes an opt block. It should be called when you’re finished with a given opt
block to clean up memory.

int ImgXOptBlkGet(hOptBlk, lpszKey, lpszBuf)
This function is used to retrieve the value for a particular key from an Option Block
(OptBlk).
Example

Parameter Type/Description
hOptBlk HANDLE    Handle to opt block obtained from ImgXCreateOptBlk.
lpszKey LPSTR    Key value you wish to retrieve.
lpszBuf LPSTR    Buffer to contain returned key value.

Return Value
The return value from this function is zero (0) on success, 1 on failure.

Comments
This function places the value of the requested key into a user-supplied buffer. Note that
opt block values cannot exceed 80 characters in length.
This function can be used to obtain ALL of the key/value pairs in an opt block by setting the
lpszKey parameter to NULL. Upon return, lpszBuf will contain an LPSTR which points to the
actual opt block string containing all key/value pairs. Each line is separated by a carriage
return ('\r').

HANDLE ImgXBeginWrite(lpFile, lpDIB, hOptBlk, lpInfo)
This function is used to begin exporting an image.
Example

Parameter Type/Description
lpFile LPSTR    Points to asciiz string containing name of file to save the

image in.
lpDIB LPBITMAPINFO    Points to a BITMAPINFO struct which defines the

image.
hOptBlk HANDLE    Handle to an option block for this image. If this is NULL,

ImageMan/X will assume logical defaults.
lpInfo LPXINFO Points to an XINFO struct defining the export procedure

for this image.

Return Value
The return value is the handle to use when referencing this export job in future ImageMan/X
functions; it is NULL if an error occurred.

Comments
This is the function which initiates the export of an image. Before calling this function, you
should create an OptBlk with the desired options (or leave this NULL), Fill in the XINFO
struct pointed to by lpInfo with the desired values, and etermine the name of the file you
will be exporting. This may be done through the OptBlk or by filling in the lpFileName
parameter; if the lpFileName parameter exists, it will supersede a filename in an OptBlk.

int ImgXWriteBlock(hJob, nLines, lpBits, lpInfo)
This function writes a block of bits to the export file specified by hJob.
Example

Parameter Type/Description
hJob HANDLE    Handle identifying job (from

ImgXBeginWrite).
nLines int    Number of raster lines in this output block.
lpBits LPSTR    Pointer to block of bits to be output.
lpInfo LPXINFO    Points to the XINFO struct which describes the current

state of this export job.

Return Value
The return value is IMGX_OK if the bits are exported successfully; otherwise, the return
value is an ImageMan/X error code.

Comments
The given bits are written subsequent to any bits currently output -- there is no facility for
writing blocks of the image out of order. Note that since the output file may be a backwards
format (i.e., last line in image appears first in file, as in Windows BMP & DIB formats), you
have to be careful when writing out your image in sections -- make sure you begin with the
correct row    (first or last, depending on the image file format). You can do this by checking
the lFlags parameter of the XINFO struct for the XF_BACKWARDS flag –if this flag is set, the
strips should be written from bottom to top.

int ImgXWriteBMPBlock(hJob, hDC, hBmp, nLines, lpInfo)
This function writes a bitmap to the export file specified by hJob.
Example

Parameter Type/Description
hJob HANDLE    Handle identifying job (from ImgXBeginWrite).
hDC HANDLE    Handle to a device context which has the same color

makeup as the image.
hBmp HANDLE    Handle to the bitmap to output. This bitmap should not

be selected into a device context at the time it is passed to this
function.

nLines int    Number of raster lines in this output block.
lpBits LPSTR    Pointer to block of bits to be output.
lpInfo LPXINFO    Points to the XINFO struct which describes the current

state of this export job.

Return Value
The return value is IMGX_OK if the bitmap is exported successfully; otherwise, the return
value is an ImageMan/X error code.

Comments
The given bitmap is written subsequent to any bits currently output -- there is no facility for
writing blocks of the image out of order. Note that since the output file may be a backwards
format (i.e., last line in image appears first in file, as in Windows BMP & DIB formats), you
have to be careful when writing out your image in sections -- make sure you begin with the
correct row    (first or last, depending on the image file format). You can do this by checking
the lFlags parameter of the XINFO struct for the XF_BACKWARDS flag -- if this flag is set, the
strips should be written from bottom to top.
This function can be used to write several bitmaps in sequence, thus allowing a large
bitmap to be written in several smaller sections.

Note
This function can handle a bitmap as large as you can create, so there is no need to export
a bitmap in strips unless your application doesn't have the entire image as a single bitmap.

int ImgXEndWrite(hJob, lpXInfo)
This function ends an export job, closes all files associated with the job, and frees all
memory allocated for the job.
Example

Parameter Type/Description
hJob HANDLE    Handle indentifying this job (from ImgXBeginWrite).
lpXInfo LPXINFO    Points to an XINFO struct which contains results of the

operation.

Return Value
The return value is IMGX_OK on success; otherwise it is an ImageMan/X error code.

HANDLE ImgXFileDialog(hOptBlk, hParentWnd)
This function displays a file dialog which allows the user to enter a filename for output,
along with a file format to use, including any specific options for that format.
Example

Parameter Type/Description
hOptBlk HANDLE    Specifies the Option Block (OptBlk) which will be used

with the Dialog.
hParentWnd HANDLE    Handle to the parent window for the dialog box.

Return Value
The return value is a handle to an option block to be used in an ImgXBeginWrite function
call.

Comments
Upon return from this function, you can pass the returned hOptBlk directly into an
ImgXBeginWrite call. Through the dialog function, an application can specify all aspects of
an export job.

Note
If you pass a NULL hOptBlk, ImageMan/X will generate an OptBlk which reflects the options
through the dialogs.

int    ImgXErrString(lpBuf)
This function places a string containing the last ImageMan/X error into lpBuf.
Example

Parameter Type/Description
lpBuf LPSTR    Points to buffer which will contain the error string text.

Return Value
Returns IMGX_OK.

Comments
The returned string is guaranteed to fit in a buffer 300 characters long.

HANDLE    ImgXErrBox(hWnd)
This function produces a message box detailing the last ImageMan/X error that occurred,
including the name of the file that produced the error and the module that encountered the
error.
Example

Parameter Type/Description
hWnd HWND Handle to the parent window for the message box.

Return Value
Returns IMGX_OK.

HANDLE    ImgXGetStatus(void)
This function returns the current ImageMan/X status. The status will correspond with one of
the ImageMan/X status codes found in the IMGX.H include file.
Example

This function takes no arguments.

Comments
The status of ImageMan/X is updated after each ImageMan/X function call.

int ImgXAbort(hImage)
This function instructs ImageMan/X to delete the current export file when the ImgXEndWrite
function is called to end writing the file.
Example

Parameters Type/Desctiption
hImage HANDLE    Handle to an image returned from ImgXBeginWrite.

Comments
Calling this function has no effect until the ImgXEndWrite function is called. If an error is
encountered, no other processing should be done

ImageMan 2.0 API
Required Functions
These functions must be included for ImageMan to function properly.

Image Initialization Functions
These functions create an "ImageMan image handle" which is subsequently used for all
imaging functions (display, rotation, color reduction, etc..). The image handle can be based
on a disk file (TIF or PCX image) or can be memory based (the Windows clipboard).

Image Export Functions
This function group allows you to create an external representation from an ImageMan
image handle. The representation can be an external disk file (TIF or PCX file, for instance)
or a memory-based object (DIB, WMF or DDB).

Manipulation Functions
This group includes such things as image rotation, color reduction, brightness and gamma
adjustment, and image scaling. Some of these functions return a handle to a new image,
while some of them affect the image handle passed to them.

Information Functions
These functions provide information about the ImageMan system or a given image handle.
This includes a list of currently supported file types for import or export, image width,
height and color makeup, and error codes and messages.

Multi-Page Functions
These functions provide information about the ImageMan system or a given image handle.
This includes a list of currently supported file types for import or export, image width,
height and color makeup, and error codes and messages.

Image Display/Printing Functions
Functions that are used for displaying/printing an image. Also, functions which affect the
way in which an image is displayed/printed.

Required Functions
All programs using ImageMan must call the following:

ImgInit Initializes the ImageMan system. Call on application startup.
ImgShutdown Cleans up all ImageMan memory. Call on application exit.

The minumum required to display a disk-based image (in order):
ImgOpenSolo Opens the image file and obtains header info, including the

color palette (if applicable).
ImgDrawImage Draws the image on a given display context.
ImgClose Closes the image and releases all memory associated with it.

The minimum required to save an image on disk (in order):
Get a handle to a DIB representing the image (could come from ImgGetDIB)
ImgXWriteDIB Outputs the image, allowing the user to select the desired file

format.

Supported Image Formats
ImageMan directly supports the image file formats listed below. For information on writing
your own image libraries to work with ImageMan, contact DTI.

Remember that ImageMan is the only imaging solution you can buy that allows you to
support virtually any image format!

Formats in red text support multi-page image reading and writing.

TIFF Revision 5.0
JPEG/JFIF
PCX
DCX
GIF
Windows BMP and DIB
Ventura IMG (IMG)
Windows Metafile (WMF)
Word Perfect Graphic (WPG)
EPSF (Encapsulated PostScript)
TGA (Targa)

Image Initialization Functions
All of these functions will initialize an image and return an ImageMan image handle to your
application. With the ImageMan image handle the image can be rotated, color-reduced,
stored to disk, etc...

ImgOpenSolo Opens an image in a standalone image file (i.e., a TIFF or PCX
file).

ImgOpenEmbedded Opens an image that is embedded within another file. Useful for
working with a database of TIFF images, for instance.

ImgFromClipboard Creates an ImageMan image from the contents of the Clipboard.
ImgFromDIB Creates an ImageMan image from a handle to a packed DIB.
ImgFromWMF Creates an ImageMan image from a Windows Metafile.

Image Export Functions
All of these functions will enable your application to convert a given ImageMan image
handle into a readily-transferable image format, either in memory, on the clipboard, or on
disk.

Memory based export functions:
ImgGetDIB Returns a packed DIB handle.
ImgGetDDB Returns a handle to a Windows DDB
ImgGetWMF Returns a handle to a Windows Metafile (vector images only)
ImgToClipboard Places an image on the Windows clipboard.

Disk-based export functions.
These functions allow you to export a given image to a disk file in any one of several
supported raster images (vector images cannot currently be written to disk). These
functions will, in general, require a handle to a packed DIB; this is easily created from an
ImageMan image handle via the ImgGetDIB function.    These functions also require an
Option Block for greatest control over the export process.

ImgXWriteDIB
This is the easiest way to export an image. Simply pass in the DIB you want exported, and
this function does the rest. Your application doesn't even need to know which image
formats are available for export.

ImgXBeginWrite / ImgXWriteBlock / ImgXEndWrite / ImgXWriteBMPBlock
These functions can be used to export an image in blocks (for instance, an extremely large
image that doesn't fit into available memory) or whenever your application needs greater
control over the export process.    Use ImgXWriteBlock when exporting a Device
Independent Bitmap (DIB), ImgXWriteBMPBlock when exporting a Device Dependent
Bitmap (DDB).

Option Block Functions
ImgXOptBlkAdd
ImgXOptBlkCreate
ImgXOptBlkDel
ImgXOptBlkGet

Miscellaneous Image Export support functions
ImgXAbort
ImgXErrBox
ImgXErrString
ImgXFileDialog
ImgXGetExt
ImgXGetStatus

Option Blocks
An Option Block (OptBlk) is a block of memory which contains various image exporting
options. Inside the memory block is a collection of strings which looks much like a
Windows .INI file. You use the ImgXOptBlk... functions to create, edit, and destroy Option
Blocks.

Manipulation Functions
These functions allow you to copy, scale, rotate, adjust gamma and brightness, and dither
or color reduce images. They're divided into two groups: those that alter the original image,
and those that produce new images which reflect the desired effects.

Functions which alter the original image
ImgBrightness Adjusts the brightness level of an image.
ImgGamma Adjusts the gamma point of an image.
ImgInvert Inverts an image.
ImgMirror Mirrors an image along the vertical and/or horizontal axis.

Functions which return a new image
ImgCopy Returns a copy of the original image, scaled to any desired size.
ImgRotate Returns a rotated copy of the original image.
ImgReduceColors Returns a color-reduced and/or dithered copy of the original

image.

Information Functions
These functions give you information about the ImageMan system or about individual
images. An application can also setup a callback function to report loading or saving status.

ImgGetInfo Retrieves image height, width, color makeup, & various flags.
ImgGetExt Returns string containing supported import extensions. String

can be passed directly to Windows common dialog function.
ImgXGetExt Returns string containing supported export extensions.
ImgGetPalette Returns a handle to a Windows logical palette for a given image.
ImgSetStatusProc Sets up a status function for a given image.
ImgSetDefaultStatusProcSets up a default status function.
ImgGetStatus Returns the status of the most recent ImageMan operation.
ImgErrBox Produces a message box for the most recent ImageMan error.
ImgErrString Returns a string containing the text of the most recent

ImageMan error.

Multi-Page Functions
These functions allow you to work with multi-page images.

ImgPageCount Returns the number of pages in a given image.
ImgSetPage Sets the current page for a given image.
ImgGetPage Returns the currently active page for an image.

ImageMan How-To
Basics of Loading and Displaying an Image
Using ImageMan with the Windows Common Dialogs
Scaling an Image
Color-Reducing an image
Displaying multiple color images simultaneously
Rotating Images
Using Status Procedures

Loading and Displaying an Image
Example

These are the general steps you should follow to open and display an image from a file.

Obtain the image name you wish to open. For this you could use the ImgGetExt
function in conjunction with the Windows Common Dialog functions.

Call the ImgOpenSolo function to obtain an ImageMan image handle to the image.
Call the ImgGetPalette function to obtain a logical palette for the image
Select the palette into the device context using SelectPalette / RealizePalette
Call ImgDrawImage to draw the image

Example: Loading and Displaying an Image

/*
This is a function to load and display an image at (x,y) on the given
device context.

Note that this is NOT the best way to work with images. This example
merely illustrates the steps required to open and dispay an image. In
general, you would only open an image once and then use the image handle
until you were done with it; then you would call ImgClose.

You should also note that there is no error handling in this example.
*/

void LoadandDisplay(LPSTR lpszFileName, HDC hDC, int x, int y, int
nWidth, int nHeight)
{
HANDLE hImage;
HPALETTE hPal;
RECT rDest;

hImage = ImgOpenSolo(lpszFileName, NULL);
hPal = ImgGetPalette(hImage);
SelectPalette(hDC, hPal, 0);
RealizePalette(hDC);

rDest.left = x;
rDest.top = y;
rDest.right = rDest.left + nWidth;
rDest.bottom = rDest.top + nHeight;

ImgDrawImage(hImage, hDC, &rDest, NULL);

ImgClose(hImage);
}

ImageMan and the Common Dialogs
Example

To use ImageMan with the Windows GetOpenFileName function, just use the return value
from the ImgGetExt function as the lpstrFilter entry in the OPENFILENAME structure passed
to the GetOpenFileName function.

ImgGetExt and the Windows Common Dialogs

HANDLE GetImage(HANDLE hWnd)
{

OPENFILENAME ofn;
HANDLE hImage;
char szFile[256], szFileTitle[256];

szFile[0] = '\0';
hImage = NULL;

ofn.lStructSize = sizeof(OPENFILENAME);
ofn.hwndOwner = hWnd;
ofn.lpstrFilter = ImgGetExt();
ofn.lpstrCustomFilter = (LPSTR) NULL;
ofn.nMaxCustFilter = 0;
ofn.nFilterIndex = 1;
ofn.lpstrFile = szFile;
ofn.nMaxFile = sizeof(szFile);
ofn.lpstrFileTitle = szFileTitle;
ofn.nMaxFileTitle = sizeof(szFileTitle);
ofn.lpstrInitialDir = lpDefPath;
ofn.lpstrTitle = "Open Image";
ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;
ofn.nFileOffset = 0;
ofn.nFileExtension = 0;
ofn.lpstrDefExt = NULL;

if(GetOpenFileName(&ofn)) {
hImage = ImgOpenSolo(ofn.lpstrFile, NULL);
if(!hImage) ImgErrBox(hWnd);

}

// get rid of ext string
GlobalFreePtr(ofn.lpstrFilter);
return hImage;

}

Notice that your application is responsible for disposing of the string returned
from ImgGetExt.

         

Scaling an Image
Example

The ImgCopy command makes it easy to scale an image to any size. The new image has
the same color makeup as the original.

ImgCopy has been designed to help you conserve memory. Using it you can make a smaller
copy of a large image without loading the large image into main memory (see the example
for details).

ImgCopy Example

/*
hImage is an ImageMan handle to a previously opened image.
lpbi is a pointer returned from ImgGetInfo(hImage)
*/

//
// Create a 200x200 thumbnail from hImage
//
hNewImage = ImgCopy(hImage, 200, 200, NULL, COPY_DEL);

//
// Copy the top-left 100x150 pixels from hImage
// into a new 200 x 300 image
//
RECT rSrc;

rSrc.left = rSrc.top = 0;
rSrc.right = 100;
rSrc.bottom = 150;
hNewImage2 = ImgCopy(hImage, 100, 150, &rSrc, COPY_DEL);

//
// Scale the image up x2
//
bNewImage3 = ImgCopy(hImage,
(int)(lpbi->bmiHeader.biWidth*2),
(int)(lpbi->bmiHeader.biHeight*2), NULL, COPY_DEL);

Color Reducing an Image
Example

ImageMan gives you many options when it comes to color reduction and dithering. All of
them make use of the ImgReduceColors function. The ImgReduceColors function allows
your application to:

Reduce a 24-bit image to 256 colors (with or without dithering)
Reduce a 256-color image to 16 colors (with or without dithering)
Reduce an image to 256-color grayscale
Dither a color image to a fixed palette (This allows you to display multiple color

images simultaneously)

Color Reduction Example

.

.
// hImg is a 24-bit image. Note that it is not altered in the
// following operations.
hImg = ImgOpenSolo("colorful.jpg", NULL);

// first we'll dither it to black & white using the Burkes dither
hImg2 = ImgReduceColors(hImg, 2, IMG_BURKES);

// next, we'll reduce it from 24-bit color to 256-colors without
// doing any dithering. To do this, ImageMan must calculate a
// palette based on the colors in the image. This is a
// time-consuming operation, but gives the best results.
hImg3 = ImgReduceColors(hImg, 256, NULL);

// The following command will reduce and dither the image to a
// pre-defined palette. This is much faster than the above code,
// but yields results that are not quite as good. This is also
// useful for displaying more than one color image at a time.
hImg4 = ImgReduceColors(hImg, 256, IMG_FIXEDPALETTE | IMG_FLOYD);

// You can also dither a 256-color image to a pre-defined
// palette. This makes it easy to display multiple color
// images simultaneously without palette problems.

// Here we reduce it to 16-bit color and dither it using
// the Floyd-Steinberg dither
hImg5 = ImgReduceColor(hImg, 16, IMG_FLOYD);

// finally, we'll produce a grayscale version of the image in
// 256 colors
hImg6 = ImgReduceColor(hImg, 256, IMG_GRAYSCALE);
.
.
.

Displaying Multiple Color Images
Example

By using the ImgReduceColors function in conjunction with the IMG_FIXEDPALETTE flag, it is
an easy matter to display several palette-color images simultaneously. This is most
commonly a problem on 256 or 16 color displays; if you're working with a 24-bit display,
this isn't a problem.

The basic idea is to dither all images against a common palette. ImageMan has a standard
rainbow palette that is used for dithering and color reduction when the IMG_FIXEDPALETTE
flag is set. By color-reducing/dithering each image in this way before display, all color
images can be displayed with very little loss of image quality.

Displaying multiple color images

//
// We're preparing these images for display on
// a 256-color video system, so we reduce to 256 colors.
//
hImage1 = ImgOpenSolo("bird.gif",NULL); // a 256-color image
hImage2 = ImgOpenSolo("squirrel.gif",NULL); // a 24-bit image

//
// hImage3 is a dithered version of hImage1
//
hImage3 = ImgReduceColors(hImage1, 256, IMG_FIXEDPALETTE | IMG_FLOYD);

//
// hImage4 is a color-reduced and dithered version of hImage2
//
hImage4 = ImgReduceColors(hImage2, 256, IMG_FIXEDPALETTE | IMG_FLOYD);

//
// We can now draw both images with good results, as long as we
// first select the proper palette into the device context beforehand.
// The proper palette is available from hImage3 or hImage4.
//
// assume that r1 and r2 have been pre-calculated
//
hPalette = ImgGetPalette(hImage3);
SelectPalette(hDC, hPalette, 0);
RealizePalette(hDC);
ImgDrawImage(hImage3, hDC, &r1, NULL);
ImgDrawImage(hImage4, hDC, &r2, NULL);

//
// Everything displayed just beautifully, huh?
//

Release Notes
If you have anything you'd like to see in this help file (is there something that caused you
particular trouble?) please call us and tell us what it is. Help files are pretty easy to edit,
after all.

void FAR PASCAL SetDefaultStatusProc(lpfnStat, lCnt, dwUser)
This function sets up a default status procedure for reporting the status of image loading
and saving.
Example

Parameter Type/Description
lpfnStat STATUSPROC The procedure to call during the load/save

operation.
lCnt LONG Interval between calls to status procedure (in bytes).
dwUser DWORD Any user information to be passed on to the status

procedure.

Comments
With    this procedure you can easily display a thermometer-bar or some other progress
indicator for image loading/saving. The dwUser parameter is any information you might
want your status procedure to be able to access.

Changes from Version 1.06
New Features

Version 2.0 is significantly faster than version 1.06, especially for Group3/Group4
images.

Support for JPEG (.JPG), Word Perfect Graphic (.WPG) files, both raster and vector
(raster images are returned as a DIB, vector images as WMF), Gem IMG format.

Export support for JPEG (with control over image quality), GIF, and TARGA images.
Export support for TIFF Group4 images.
Multi-page image support. Read and write multi-page TIFF and DCX files. (See Multi-

Page Functions)
Supports callback function for reporting load/save status. (See

ImgSetDefaultStatusProc, ImgSetStatusProc)
High-Speed color reduction/dithering (See ImgReduceColors)
Fast image rotation (See ImgRotate)
TWAIN Scanner Support
Direct support for Windows Common Dialog file open function (See ImgGetExt)
Clipboard Support (See ImgToClipboard / ImgFromClipboard)

The Biggest Change
The biggest change from Version 1.06 is how an image is defined. Previous ImageMan

versions defined an image in relation to a file on disk. This approach precluded working with
memory-based images, including the clipboard, and also made it somewhat more difficult to
define image transformations (rotations, color reduction, etc.) in terms of an "ImageMan
image handle."

Version 2.0 defines an image as the DIB or WMF attached to a given image handle.
This enables ImageMan to do all the things it did in Version 1.06, plus work with in-memory
images passed in from applications and from the clipboard. It also means that image
transformations on an ImageMan image handle can return another ImageMan image handle,
making the API much more orthagonal.

Other significant changes
ImageMan/X has been incorporated into ImageMan, allowing image export as well as

image import. The old ImageMan/X function calls should work unaltered, but you no longer
need to link with the IMGX.LIB file, nor do you need to include IMGX.DLL with your
application. (See Image Export Functions)

You must include calls to ImgInit and ImgShutdown.

The whole concept of tolerance (via ImgSetTolerance function) is no longer valid.
Since the image definition has changed, tolerance no longer makes sense. The
ImgSetTolerance function is no longer available.

The ImgDrawImage function no longer creates a scaled-to-size DDB. To create a
scaled DDB of an image, you should call the ImgCopy function to create a DIB of the desired
size, then call ImgCreateDDB on the scaled image. ImgDrawImage will still scale an image to
fit a desired rectangle, but it now relies on the StretchDIBits function, which is notoriously
slow (it's much, much faster to call ImgCopy to scale an image). These changes give an
application much more control over memory allocation.

Rotating Images
Example

ImageMan allows you to rotate any image in 90-degree increments.

Miscellaneous Image Manipulations

.

.
// hImage has been previously opened
hImage2 = ImgRotate(hImage, 180, COLORREF(0));

ImgBrightness(hImage2, 100); // brighten the image
ImgMirror(hImage2, TRUE, FALSE); //Mirror vertically

.

.

Using Status Procedures
Example

With the ImgSetDefaultStatusProc and ImgSetStatusProc functions, ImageMan makes it
easy for an application to display load/save status information for any image.

The easiest method is to call ImgSetDefaultStatusProc when you initialize ImageMan. This
way you can set it up and just forget it.

The ImgSetStatusProc allows you to set a status proc for individual images. This should
rarely be needed.

Both of these function utilize a callback function supplied by the calling application. This
callback function receives three parameters when it is called. The first is the handle to the
ImageMan image being loaded (for image saves, this parameter is 0). The second is an
integer representing the percentage of the operation completed (0 - 100). The third is the
DWORD passed to ImageMan when the status procedure was setup; this DWORD is used to
allow the application to pass any extra information to the status procedure.

Status Callback Procedure
The callback procedure utilized by the ImgSetDefaultStatusProc / ImgSetStatusProc
functions is defined below.
Example

int FAR PASCAL status(hImage, nPercent, dwUserInfo)

Parameter Type/Description
hImage HANDLE Handle to the ImageMan image being loaded. For image

writing, this is 0.
nPercent int Percentage of the load/save operation completed.
dwUserInfo DWORD User information passed to ImgSetDefaultStatusProc /

ImgSetStatusProc. This allows the caller to send ancillary
information to the status procedure.

Return Value
The return value is currently insignificant. In future versions, a non-zero return value will
cause the load/save operation to be aborted.

ImgSetDefaultStatusProc / ImgSetStatusProc

.

// declare our status procedure
int _export FAR PASCAL status(HANDLE hImg, int nPercent, DWORD
dwStatus);
.
.
.
// Initialize ImageMan system and setup default status procedure.
// When we setup the status proc, pass in the handle to the
// status window we're using...
ImgInit();
ImgSetDefaultStatusProc(status, 25000L, (DWORD)hStatusWnd);
.
.
hImage = ImgOpenSolo("test.tif", NULL); // status procedure isn't
called here
ImgLoad(hImage, NULL); // status procedure is called now
ImgUnload(hImage, TRUE, TRUE, TRUE);// unload everything
// after following call, status proc will be called much more frequently
during load
ImgSetStatusProc(status, 1000L, (DWORD)hStatusWnd);
ImgLoad(hImage, NULL); // status displayed again

//
// Here's the actual-factual status procedure. Remember that dwStatus
is, in this
// case, the handle to the status window.
//
int FAR PASCAL status(HANDLE hImg, int nPercent, DWORD dwStatus)
{
//
// the status window displays a bar-graph in response to WM_USER
messages.
//
if (dwStatus) SendMessage((HWND)LOWORD(dwStatus), WM_USER, nPercent,
0L);
}

.

Display/Printing Functions
These functions deal with displaying and printing images.

ImgCreateDDB Creates a device-dependent bitmap for use when drawing the
image.

ImgDrawImage Draws a given image on a given device context.

ImgSetROP Sets the opcode to be used when drawing an image.

ImgGetROP Retrieves the current ROP code used for drawing an image.

ImgLoad Forces an image to be decoded and loaded into memory.

ImgPrintImage Draws a given image on a given printer device context.

ImgUnload Unloads one or more in-memory representations of a given
image.

int FAR PASCAL ImgInvert(hImage)
This function inverts a given image.
Example

Parameter Type/Description
hImage HANDLE    Identifies the image to be inverted.

Return Value
The return value is IMG_OK on success, an error value on error.

Comments
Although inversion is most commonly performed on monochrome images, it can be applied
to color images as well. When used with palette-based images (256 or 16 color images) you
must call the ImgGetPalette function after calling the ImgInvert function, as ImgInvert
inverts the palette and not the actual image pixels.

ImageMan 2.0 Demo Notes
Please Remember: This demo is still in Beta. If something doesn't work, that
doesn't mean that ImageMan doesn't work - it may just be a bug in the demo
program itself. Also, the way the demo uses ImageMan is specific to the
purposes of the demo (i.e., to show off ImageMan's features in a general way);
ImageMan can be tailored in many ways, so the results you get for your specific
application may be significantly faster.

This demo was created using Microsoft's Visual C++ and the Microsoft Foundation Classes.
If you know what you're doing with MFC and ImageMan, you could put this demo together
from scratch in a day or two.

The general-release version of the demo has been linked directly with the ImageMan object
files for security purposes. Any products you distribute will utilize the IMGMAN2.DLL
dynamic link library.

Additional Notes:

For the demo, all color images >= 256 colors are dithered to a common palette. This
makes it slightly slower to display the image, but reduces the flickering due to palette
management when switching between images.

The default dither method is None (i.e., no dithering is performed). If you wish to alter
the dither method, you must select it from the menu before dithering an image. Without
dithering, color images reduced to 2-colors will not be very attractive.

When displaying the thumbnail window, the source image can be scrolled by
dragging the rectangle visible on the thumbnail window. Just click in the rectangle and drag.

Monochrome thumbnail images are produced by preserving black pixels. For inverted
images this will not produce good results.

The help file associated with the demo (IM2.HLP) must be in the same directory as
the demo or on the path for the help to be accessible.

We have noticed problems with video drivers when performing certain operations
(most notably when scrolling an image). If you see artifacts when using the demo it is most
likely due to the video driver. These problems usually manifest themselves when working
with DIBs, so a possible solution is to convert images to DDBs (which is easy with
ImageMan). If you've got any questions about this issue, please call us and ask about it.

